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Abstract. Hamiltonians for general multi-state spin-glass systems with Ising symmetry are derived for
both sequential and synchronous updating of the spins. The possibly different behaviour caused by the
way of updating is studied in detail for the (anti)-ferromagnetic version of the models, which can be
solved analytically without any approximation, both thermodynamically via a free-energy calculation and
dynamically using the generating functional approach. Phase diagrams are discussed and the appearance
of two-cycles in the case of synchronous updating is examined. A comparative study is made for the
Q-Ising and the Blume-Emery-Griffiths ferromagnets and some interesting physical differences are found.
Numerical simulations confirm the results obtained.

PACS. 05.70.Fh Phase transitions: general studies – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems – 75.10.Hk Classical spin models

1 Introduction

Recently, there has been renewed interest in the possi-
bly different physics arising from the sequential or syn-
chronous execution of the microscopic update rule of
the spins in disordered systems. For example, the Little-
Hopfield model on a random graph [1] and random field
Ising chains [2], both with synchronous updating have
been studied. For both systems governed by a pseudo-
Hamiltonian of binary Ising spins (i.e., a Hamiltonian
dependent on the inverse temperature) first derived by
Peretto [3], it has been shown that the physics is asymp-
totically identical to that of the sequential version of the
models. Furthermore, for a class of attractor neural net-
works with spatial structure (one dimensional nearest-
neighbour interactions and infinite-range interactions)
governed again by Peretto’s pseudo-Hamiltonian it has
been found [4] that dynamical transition lines for syn-
chronous updating in parameter space are exact reflec-
tions in the origin of those in sequential updating and that
the relevant macroscopic observables can be obtained from
those of sequential updating via simple transformations.

It is yet unclear to what extent the two types of spin
updating lead to such common equilibrium features. For
example, it is known that the phase diagram of the se-
quential and synchronous Hopfield neural network model
in the replica-symmetric approximation are different (e.g.
the retrieval region is slightly larger in the synchronous
case) [5] whereas the phase diagram of the Sherrington-
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Kirkpatrick (SK) spin-glass model [6] remains unaffected
by this difference in updating [7].

The aim of this work is to get more insight in the pos-
sible differences between sequential and synchronous up-
dating by studying more complicated models containing
multi-state spins. In particular, we look at the Q-Ising and
Blume-Emery-Griffiths (BEG) (anti)-ferromagnetic mod-
els which can also be related to a neural network model
storing only one pattern. We discuss the relevant phase di-
agrams as well as the dynamics using the generating func-
tional approach. We are not aware of any previous studies
comparing these two types of updating for these models.
It turns out that for the Q-Ising model again the tran-
sition lines for synchronous updating in parameter space
are exact reflections of those in sequential updating. For
the BEG model, however, the two forms of updating lead
to different physics in part of the parameter space.

The paper is organized as follows. In Section 2, we
generalize the results of Peretto by writing down (pseudo)
Hamiltonians based on the detailed balance property for
multi-state spin models with random interactions for both
sequential and synchronous updating. In the zero- tem-
perature limit the corresponding Lyapunov functions are
obtained. In Section 3, the phase diagrams for the Q-Ising
(anti)-ferromagnets are studied in detail, emphasizing the
differences between both forms of spin updating. Section 4
discusses the statics of the BEG (anti)-ferromagnet and
Section 5 the dynamics using the generating functional
approach. Numerical simulations confirm the results ob-
tained. Finally, in Section 6 some concluding remarks are
presented.
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2 Models and Hamiltonians

2.1 The Q-Ising model

Consider a model of N spins which can take values σi, i =
1, . . . , N from a discrete set S = {−1 = s1 < s2 < . . . <
sQ = +1} . Given the configuration σ(t) ≡ {σi(t)}, i =
1, . . . , N , the local field in spin i equals

hi(σ(t)) =
N∑

j=1

Jijσj(t) (1)

with Jij the interaction between spin i and spin j. In gen-
eral, the Jij are quenched random variables chosen accord-
ing to a certain distribution, e.g. a Gaussian in the case
of the SK model or a Hebbian learning rule in the case of
neural networks.

A spin is updated through the spin-flip dynamics de-
fined by the transition probability

Pr{σi(t + 1) = sk ∈ S|σ(t)} =
exp[−βεi(sk|σ(t))]∑
s∈S exp[−βεi(s|σ(t))]

.

(2)
Here the energy potential εi[s|σ] is defined by [8]

εi[s|σ] = −
[
1
2
hi(σ)s − bs2

]
, (3)

where b is the gain parameter of the system. The zero
temperature limit T = β−1 → 0 of this dynamics is given
by the updating rule

σi(t) → σi(t + 1) = sk : min
s∈S

εi[s|σ(t)] = εi[sk|σ(t)]. (4)

This updating rule (4) is equivalent to using a gain func-
tion gb(·),
σi(t + 1) = gb(hi(σ(t))

gb(x) ≡
Q∑

k=1

sk [θ [b(sk+1 + sk) − x] − θ [b(sk + sk−1) − x]]

(5)

with s0 ≡ −∞ and sQ+1 ≡ +∞. The parameter b sup-
presses or enhances the states of the spins that lie around
the zero state.

In the case of sequential updating it is well-known from
detailed balance arguments that for symmetric couplings,
i.e., Jij = Jji, and in the absence of self-interactions,
i.e., Jii = 0, the equilibrium distribution for the Q-Ising
system has the Boltzmann form with Hamiltonian (see,
e.g., [9])

HQ
S (σ) = −1

2

N∑

i,j �=i

Jijσiσj + b
N∑

i=1

σ2
i , (6)

valid for any temperature and with Lyapunov behaviour
for T = 0. We remark that the second term is not a self

coupling term. As in any spin model with sequential up-
dating, the stationary solutions can only be fixed points.

For synchronous updating a discussion does not seem
to have appeared in the literature. Following the work
of Little [10] (see also [11]), we can write down, start-
ing essentially from equation (2), the following form for
the Q-Ising Hamiltonian in this case

HQ
P (σ(t), σ(t + 1)) = − 1

β

∑

i,j

Jijσi(t)σj(t + 1)

+ b
∑

i

[
σ2

i (t) + σ2
i (t + 1)

]
. (7)

Next, the arguments of Peretto [3] can be generalized
rather straightforwardly to obtain that the equilibrium
probability distribution can be written in the Boltzmann
form with a Hamiltonian dependent on one time and on
the inverse temperature

HQ
P (σ) = − 1

β

N∑

i=1

ln

[
∑

s∈S
exp

(
β
[
hi(σ)s − bs2

])
]

+ b

N∑

i=1

σ2
i . (8)

We remark that self-couplings Jii are allowed to be
present. In addition, when evaluating traces over spins in
the calculation of, e.g., the partition function, one realizes
that the system is equivalent to one with a Hamiltonian
involving a set of duplicate Ising spins (see, e.g., [5]), which
can be written as

HQ
P (σ, τ ) = −

∑

i,j

Jijσiτj + b
∑

i

[σ2
i + τ2

i ]. (9)

In the limit β → ∞ we find after some algebra, starting
from (8),

HQ
P (σ; T = 0) = −

N∑

i=1

Q∑

j=[ Q+3
2 ]

(|hi(σ)|sj − bs2
j

)

× θ (|hi(σ)| − b(sj−1 + sj))

× θ (b(sj + sj+1) − |hi(σ)|) + b

N∑

i=1

σ2
i (10)

with the standard notation [·] indicating the largest in-
teger. For Q = 2, we find back the Peretto Hamiltonian
with an irrelevant additive constant. For Q = 3 we have

HQ
P (σ; T = 0) =

−
N∑

i=1

(|hi(σ)| − b) θ (|hi(σ)| − b) + b

N∑

i=1

σ2
i . (11)
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The Hamiltonian for general Q is bounded from below
by HP (σ; T = 0) ≥ −∑i,j �=i |Jij |−N |b| and, furthermore

∆HQ
P (σ; T = 0) ≡ HQ

P (σ(t+1); T = 0)−HQ
P (σ(t); T = 0)

= −
N∑

i=1

(σi(t + 2) − σi(t))

× (hi(σ(t + 1)) − b(σi(t + 2) + σi(t))) ≤ 0 (12)

indicating that the equilibrium behaviour can be fixed-
points and/or cycles of period 2, i.e., σi(t) = σi(t+2), ∀i.

2.2 The BEG model

The second model we consider is the BEG model intro-
duced in [12] in the context of the λ-transition and phase
separation in the mixtures of He3−He4 in a crystal field,
and recently discussed as a spin-glass (see [13,14] and
references therein) and as a neural network model max-
imizing the mutual information content for ternary neu-
rons [15–17]. This model can be described as follows.

Consider N spins which can take values σi, i =
1, . . . , N from a discrete set S = {−1, 0, +1}. Given the
configuration σ(t) ≡ {σi(t)}, i = 1, . . . , N at time t, the
spins are updated according to the spin-flip dynamics de-
fined by the transition probability (2) where the energy
potential εi[s|σ(t)] is now defined by

εi[s|σ(t)] = − (h1,i(σ(t))s + h2,i(σ(t))s2
)
. (13)

The local field h1,i(σ) is the usual one as appearing, e.g.,
in (3), while the biquadratic h2,i(σ) local field is given by

h2,i(σ(t)) =
N∑

j=1

Kijσ
2
j (t). (14)

In the limit β → ∞ this dynamics is given by the updating
rule

σi(t + 1) = sign(h1,i(σ(t)))θ (|h1,i(σ(t))| + h2,i(σ(t))) .
(15)

In the case of sequential updating of the spins the
Hamiltonian is known in the literature mentioned above
and given by

HBEG
S (σ) = −1

2

N∑

i,j �=i

(
Jijσiσj + Kijσ

2
i σ2

j

)
(16)

with Jii = 0 and Jij = Jji, for ∀i, j.
For synchronous updating detailed balance and sym-

metry in the couplings lead to the pseudo-Hamiltonian

HBEG
P (σ) = − 1

β

N∑

i=1

ln
{
2eβh2,i(σ) cosh (βh1,i(σ)) + 1

}

(17)
with as two-spin representation

HBEG
P (σ, τ ) = −

∑

i,j

(
Jijσiτj + Kijσ

2
i τ2

j

)
. (18)

Determining the dominant contributions in the limit β →
∞ we find

HBEG
P (σ; T = 0) = −

N∑

i=1

(|h1,i(σ)| + h2,i(σ))

× θ (|h1,i(σ)| + h2,i(σ)) . (19)

This form is clearly bounded from below and it can also
be shown that the equilibrium behaviour is given by fixed-
point attractors and/or cycles of period 2.

Both the Q-Ising and BEG spin-glass models and neu-
ral networks have been discussed in the literature starting
from the Hamiltonian appropriate for sequential updating
of the spins, as discussed in the introduction. Concerning
synchronous updating, especially concerning the appear-
ance and properties of two-cycles, very little seems to be
written down, even for the ferromagnetic versions of these
models. Since interesting different physics is involved we
want to fill this gap in the following sections.

3 Q-Ising ferromagnet: sequential versus
synchronous updating

3.1 Stationary behaviour

We consider the Q-Ising (pseudo)-Hamiltonians for se-
quential and synchronous updating derived before for sim-
plified interactions of the form

Jij =
J

N
(20)

where J can be positive or negative. The parameters de-
scribing the properties of this system are the magnetiza-
tion m and the spin activity a given by

m(σ) =
1
N

∑

i

σi, a(σ) =
1
N

∑

i

σ2
i (21)

and in both cases the equilibrium behaviour can be studied
by looking at the free energy per site,

f =
−1
βN

ln Z, Z =
∑

σ

exp (−βH(σ)). (22)

For sequential updating starting from the Hamilto-
nian (6) a standard calculation leads to the following free
energy

βfS = extr
m

[
βJ

2
m2 − ln

∑

σ

exp(−βH̃(σ))

]
(23)

with the effective Hamiltonian

H̃S(σ) = −Jmσ + bσ2. (24)

The saddle-point equation for m in this notation reads

m =
∑

σ σ exp(−βH̃(σ))
∑

σ exp(−βH̃(σ))
≡ 〈σ〉 (25)
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which is an effective thermal average, denoted by 〈·〉.
In the case of synchronous updating we start from the

pseudo-Hamiltonian written in the two-spin representa-
tion (9). This Hamiltonian is symmetric with respect to
the transformation σ ↔ τ . The following result for the
free energy is obtained

βfP = extr
mσ,mτ

[
βJmσmτ − ln

∑

σ,τ

exp(−βH̃(σ, τ))

]
(26)

with the effective Hamiltonian

H̃(σ, τ) = −Jmτσ − Jmστ + bσ2 + bτ2. (27)

The saddle-point equations for mσ and mτ read

mσ =

∑
σ,τ σ exp(−βH̃(σ, τ))
∑

σ,τ exp(−βH̃(σ, τ))
= 〈σ〉 (28)

mτ =

∑
σ,τ τ exp(−βH̃(σ, τ))
∑

σ,τ exp(−βH̃(σ, τ))
= 〈τ〉 , (29)

where this again defines the average 〈·〉.
The effective Hamiltonian factorises over the two effec-

tive spins, and so does the partition function. The saddle-
point equations for mσ and mτ (28−29) can be written as

mσ = FQ(mτ ), mτ = FQ(mσ) (30)

with the function FQ given by

FQ(x) =
∑

σ σ exp β(Jxσ − bσ2)∑
σ exp β(Jxσ − bσ2)

. (31)

The equations (30) can be written as

mσ = FQ(FQ(mσ)) , mτ = FQ(FQ(mτ )) (32)

and similar equations can be written down for the activity,
for instance

aσ = GQ(FQ(mσ)),

GQ(x) =
∑

σ σ2 exp β(Jxσ − bσ2)∑
σ exp β(Jxσ − bσ2)

. (33)

At this point we remark that the saddle-point equation
for the sequential Q-Ising model (25) is equivalent to m =
FQ(m) and the activity satisfies a = GQ(m).

For J > 0 the function FQ(x) is monotonically increas-
ing since

∂FQ(x)
∂x

= βJ

[∑
σ σ2 expβ(Jxσ − bσ2)∑

σ exp β(Jxσ − bσ2)

−
(∑

σ σ expβ(Jxσ − bσ2)∑
σ expβ(Jxσ − bσ2)

)2
]
≥ 0. (34)

Consequently the right-hand side of

(mσ − mτ )2 = (mσ − mτ )(FQ(mτ ) − FQ(mσ)) (35)
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Fig. 1. Phase diagram for the sequential Q = 3 Ising ferro-
magnet. The thick dashed (solid) line indicates the thermody-
namic second (first) order transition between the ferromagnet
and paramagnetic phase. The thin lines border the coexistence
region.

is always negative implying that mσ = mτ and

fP = 2fS .

In other words, the equilibrium states for both types of
updating in the ferromagnetic Q-Ising model are the same.
For J < 0, and also for the BEG-model, this is not valid
as we will see in the following sections.

3.2 An illustrative example: Q = 3

The results for Q = 2 are standard textbook knowledge
(see, e.g, [18]). For Q = 3, the equations for FQ and GQ

can be worked out explicitly

FQ=3(x) =
2 sinh (βJx)

exp (βb) + 2 cosh (βJx)
(36)

GQ=3(x) = FQ=3(x) coth (βJx). (37)

The phase diagram for sequential updating is shown in
Figure 1. It is trivial to check that a negative J implies
that m = FQ=3(m) only leads to a stable paramagnetic
solution m = 0. For positive J a transition occurs be-
tween the paramagnetic and the ferromagnetic phase. It
is second order and given by the dashed line

a =
1

βJ
, βb = ln (2(βJ − 1)) (38)

for βJ < 3.01 and βb < 1.39. It is first order above this
tricritical point and given there by the thick solid line,
which is the thermodynamic transition line found by com-
paring free energies. Starting in the ferromagnetic phase
for βJ > 3.01 and letting βb become bigger we arrive
at the first solid line where also the paramagnetic solu-
tion starts to be stable and, hence, the coexistence re-
gion II begins. This line is given by (38). At the thick full
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Fig. 2. Phase diagram of the synchronous Q = 3 Ising ferro-
magnet. The lines are as in Figure 1.

line, this paramagnetic solution becomes the global mini-
mum of the free energy and at the second thin solid line
given by

m(coth(βJ) − m) =
1

βJ
(39)

the ferromagnetic solution stops existing. It is interest-
ing to remark that inside the m = 0 phase, for any βJ
and βb ≥ 2.89 only 10% or less of the spins remain in
states ±1 Furthermore, the phase diagram in the region
of negative b is rather trivial since negative b tend to sup-
press all the zero states in the system.

For synchronous updating the equations (32–33) are
invariant under a change of sign of J , such that the corre-
sponding βJ − βb phase diagram will be symmetric with
respect to the axis J = 0. Furthermore, as shown be-
fore, the sequential and synchronous Q-Ising models have
exactly the same stationary states for any J > 0. There-
fore, the phase diagram is straightforwardly given in Fig-
ure 2. However, some caution is required here. From a
study of the dynamics, similar to the one presented for
the BEG-model in the next section, one becomes aware of
the difference between the regions J > 0 and J < 0. For
positive J , all stationary solutions are fixed-points, while
for negative J the m = 0 solution (stable in I and II) is
of the same nature as for J > 0. The m �= 0 solution (sta-
ble in II and III) is a two-cycle, and the system jumps
from m to −m with the activity a constant.

4 BEG ferromagnet: statics for sequential
and synchronous updating

We recall the (pseudo)-Hamiltonian for sequential and
synchronous updating (16) respectively (17) and choose
ferromagnetic couplings

Jij =
J

N
, Kij =

K

N
. (40)

The order parameters describing the properties of the sys-
tem are defined as in (21).

For sequential updating a standard calculation leads
to the free energy

βfS = extr
m,a

{
1
2
βJm2 +

1
2
βKa2

− ln
[
2 exp (βKa) cosh (βJm) + 1

]}
(41)

and the following fixed-point equation must be satisfied

m =
2 sinh (βJm)

exp (−βKa) + 2 cosh (βJm)
(42)

a =
2 cosh (βJm)

exp (−βKa) + 2 cosh (βJm)
. (43)

For synchronous updating the free energy becomes

βfP = extr
mσ,mτ ,aσ,aτ

{
βJmσmτ + βKaσaτ

− ln [(2 exp (βKaσ) cosh (βJmσ) + 1)

× (2 exp (βKaτ ) cosh (βJmτ ) + 1)]
}

(44)

with mσ, mτ , aσ, aτ satisfying the saddle-point equations

mσ = FB(mτ , aτ ), mτ = FB(mσ, aσ) (45)
aσ = GB(mτ , aτ ), aτ = GB(mσ, aσ) (46)

and the functions FB, GB given by

FB(x, y) =
2 sinh (βJx)

exp (−βKy) + 2 cosh (βJx)
(47)

GB(x, y) = FB(x) coth (βJx), (48)

where the subscript B refers to the BEG model. It is clear
that the results for sequential updating can then be writ-
ten as

m = FB(m, a) , a = GB(m, a) (49)

and the results for synchronous updating satisfy

mσ = FB(FB(mσ, aσ), GB(mσ, aσ)) (50)
aσ = GB(FB(mσ, aσ), GB(mσ, aσ)). (51)

These relations form again the basis for studying the
differences and similarities between sequential and syn-
chronous updating in the BEG model. Let us first look at
the phase diagram for sequential updating shown in Fig-
ure 3. For J < 0 the only stable solution is given by m = 0
and the single value a = GB(0, a) = 2[2 + exp (−βKa)]−1.
For J > 0 we see from (43) that, when m �= 0 and K �= 0,
a = m coth (βJm).

The transition between the paramagnetic and ferro-
magnetic phase is given by the dashed line

a =
1

βJ
, βK = −βJ ln (2(βJ − 1)) (52)

in analogy with the transition line (38) for the Q = 3 Ising
ferromagnet. It is second order for all coupling parameters,
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Fig. 3. Phase diagram for the sequential BEG ferromagnet.
The lines are as in Figure 1.

in contrast with the one for the Q = 3 Ising model. We
remark that inside the paramagnetic phase, only 10% of
the spins (or less) remain in the states ±1 below βK �
−28.904.

For synchronous updating the phase diagram is more
involved as can be seen in Figure 4. First we note that
the set of equations (51) is invariant under the change of
sign of J , such that the phase diagram is symmetric with
respect to the J = 0 axis.

In the case m = 0 one finds from equation (51) that the
equation for a is given by a = GB(GB(0, a)). For certain
values of βK, this equation has three solutions bifurcating
from the sequential one a = GB(0, a) at the following
point

βK =
−1

a(1 − a)
, 1 = (1 − a) ln

(
2(1 − a)

a

)
(53)

giving the result a∗ � 0.316 and βK∗ � −4.623. This bi-
furcation line is indicated in Figure 4 as the dashed-dotted
line. It separates the regions I -II and V -VI in the phase
diagram. For βK < βK∗, the two new solutions appearing
at that point become automatically the stable ones in the
phases where m = 0 is stable (II, III, and IV ), while the
sequential solution becomes unstable. In region I, where
only the solution m = 0 is stable, the unique and stable
solution for a is a = GB(0, a). In addition, for βK < βK∗
the transition line (52) becomes simply the border where
the ferromagnetic solution starts to exist, but is not yet
stable, since in region III the ferromagnetic solution is
only a minimum of the free energy in the m direction.

Simulations and the dynamics of the BEG-model dis-
cussed in the next section show that in the paramagnetic
phase II, for βK < βK∗, the system oscillates between
the two stable solutions for a and, therefore, the equilib-
rium configuration is a cycle of period 2 where both con-
figurations involved have different a values which become
equal to 0 and 2/3 when βK → −∞.

We find that below βK∗ the transition from the para-
magnet to the ferromagnet phase becomes first order.
Comparing numerically the free energies we find the first

VIVI

I I

IIII

VV

IVIV

IIIIII
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Fig. 4. Phase diagram for the synchronous BEG ferromagnet.
The dashed-dotted line indicates the bifurcation of solutions
in a. The rest of the lines is as in Figure 1.

order thermodynamic transition indicated by the thick
solid lines in Figure 4. The tricritical point is given by
βJ � ±3.160, βK � −4.623. As a consequence, as in
the Q = 3 Ising model and in contrast with the sequential
BEG model, there is a coexistence region bordered by the
thin solid lines. Again, these lines can be obtained analyt-
ically. Starting in the stable paramagnetic phase m = 0
for, to fix ideas, βJ = 7 and increasing the value of βK
we find the following. We first meet the thin dashed line
where the ferromagnetic solution m > 0 appears but is
still unstable. This line coincides with the transition line
in the sequential BEG model (recall Fig. 3) because the
sequential solution is also a solution here. In region III
this ferromagnetic solution stays unstable until we meet
the solid line between regions III and IV , being the lower
border of the coexistence region. This line is given by the
point where the ferromagnetic free energy becomes a (lo-
cal) minimum in the a direction, i.e.,

(2βK − a)
∂GB(m, a)

∂a
− (βJ)2(a2 − m2)

(
∂FB(m, a)

∂a

)2

− (1 − a)

[
(βK)2a

(
1 +

(
∂GB(m, a)

∂a

)2
)

+βKaGB(m, a)
∂GB(m, a)

∂a
− βJmGB(m, a)

∂FB(m, a)
∂a

+2βJβKm
∂FB(m, a)

∂a

∂GB(m, a)
∂a

]
= 0 (54)

where FB(m, a) and GB(m, a) are defined in (47) and (48).
Next, we meet the thermodynamic line discussed be-

fore where the ferromagnetic solution becomes a global
minimum of the free energy. Increasing βK further we
arrive at the border of region IV and V where the para-
magnetic solution becomes unstable. It is given by

2(βJ)2a
exp(−βKa) + 2

= 1. (55)
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Fig. 5. Stationary limit of m and a as a function of βK
given βJ = 7. The same labels correspond to the same points.
Solid lines denote stable solutions, while dashed lines indicate
unstable ones.

This equation has two solutions. The first solution a =
GB(0, a) gives the separation line between regions I
and V I, which corresponds to the transition line in se-
quential updating (Fig. 3). The second solution a =
GB(GB(0, a)) �= GB(0, a) gives the upper border of the
coexistence region IV . The last line we meet is the sep-
aration between regions V and V I, as found in equa-
tion (53). In regions V and V I, only the ferromagnetic
solution is stable. They differ, as we have remarked after
equation (53), in the fact that two new unstable solutions
in a appear in V .

Figure 5 represents a further illustration of this be-
haviour. The stationary limit of m and a is shown as a
function of βK given βJ = 7. Solid lines denote stable
solutions, while dashed lines indicate unstable ones. All
the transitions mentioned before can be recognized in this
figure: point 1 is the transition given by equation (52),
points 2 and 3 are the ones predicted by equation (54),
point 4 is the transition governed by equation (55) and
point 5 can be found as a solution of equation (53).

These results allow us to say that sequential and syn-
chronous updating lead to completely the same physics
(fP = 2fS) in the region βJ > 0, βK > −4.623. Hence,
as we will further explain in the next section on dynamics
there are no cycles for positive couplings, but we do find
them for positive βJ and negative βK. They turn out to
be stable in the regions II, III and IV .

5 BEG ferromagnet: dynamics for sequential
and synchronous updating

The aim of this section is to study the dynamics of the
BEG model in order to further examine the difference be-
tween sequential and synchronous updating and to further
understand the appearance and behaviour of two-cycles.
In order to do so we use the generating function (path
integral) technique introduced in [19] to the field of sta-
tistical mechanics and, by now, part of many textbooks.
In particular, we follow [20]. Since we have no disorder in
our problem, the method can be used in its simplest form.

The probability of a certain microscopic path of spin
configurations from time 0 up to time t is denoted
by P[σ(0), ..., σ(t)]. For the BEG model defined in Sec-
tion 2 it is given by

P[σ(0), ..., σ(t)] ≡ P0(σ(0))
t−1∏

s=0

W [σ(s + 1); σ(s)] (56)

with W [σ; σ′] the transition matrix of the Markovian
process defined by the spin-flip dynamics given by equa-
tions (2) and (13). It depends on the specific way of up-
dating the spins (sequential or synchronous) and will be
specified later. We introduce a generating function for the
BEG model as a function of the field Φ

Z[Φ] =

〈
exp

[
−i

t∑

s=0

N∑

i=1

2∑

k=1

φk,i(s)σk
i (s)

]〉

path

(57)

where the average 〈·〉path is an average over
P[σ(0), ..., σ(t)]. The order parameters of the system are
generated by this function Z[Φ] through

〈σk
i (s)〉path = i lim

Φ→0

(
∂Z[Φ]

∂φk,i(s)

)
. (58)

At this point we remark that, for our purposes, it is suffi-
cient to look at these one-time quantities. Again, to unify
notation we use the “magnetizations” mk(s), k = 1, 2 to
denote the magnetization m(σ(s)), respectively the spin
activity a(σ(s)).

Introducing these magnetizations into the generating
function (57) by using appropriate δ functions we obtain

Z[Φ] ∝
∫ ∏

k

[dmkdm̂k] expNΨ (59)

with dmk = dmk(0)...dmk(t) and similarly for dm̂k. The
quantity Ψ reads

Ψ = i
∑

k,s

m̂k(s)mk(s)

+
1
N

∑

i

ln

〈
exp



−i
∑

k,s

σk
i (s)(m̂k(s) + φk,i(s))




〉

path

.

(60)

This generating function (59) allows for the application of
the saddle-point method. In order to continue we need to
specify the type of updating.
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5.1 Synchronous updating

In this case all spins are updated at the same time such
that the transition probabilities Wp[σ(s+1); σ(s)] are just
the product of the transition probabilities of the single
spin (recall Eqs. (2) and (13)). Noting that the local fields
are equal to hk(s) ≡ Jkmk(s) (with obvious definitions
for Jk) we obtain for (60)

Ψ = i
∑

k,s

m̂k(s)mk(s) +
1
N

∑

i

ln




∑

σ(0)

...
∑

σ(t)

P0(σ(0))

× exp



−i
∑

k,s

σk
i (s)(m̂k(s) + φk,i(s) + iβJkmk(s − 1))





× exp
[
−
∑

s

ln
(
1+2eβJ2m2(s−1)cosh (βJ1m1(s−1))

)]]
.

(61)

Choosing the initial conditions P0(σ(0)) to be iidrv with
respect to i and letting φk,i → φk, the single-site nature of
the last expression becomes apparent. Defining an effective
(i.e., single-site) path average denoted by 〈·〉∗ the saddle-
point equations then become

mk(s) = 〈σk(s)〉∗, m̂k(s) = 0. (62)

Solving the saddle-point equations and summing over the
spins we easily obtain

m1(s) =
2eβJ2m2(s−1) sinh (βJ1m1(s − 1))

1 + eβJ2m2(s−1) cosh (βJ1m1(s − 1))
(63)

m2(s) = m1(s) coth(βJ1m1(s − 1)). (64)

These solutions allow for two-cycles when mk(s) = mk(s+
2), k = 1, 2 and fixed points with mk(s) = mk(s + 1).
The stationary limit is obtained when we drop the time
dependence, writing mk(s) as mσ and mk(s− 1) as mτ or
vice versa.

5.2 Sequential updating

We start from the stochastic process

ps+1(σ) =
∑

σ′
Ws[σ; σ′] ps(σ′) (65)

with ps+1(σ) the probability to be in a state σ at time s+
1. For the BEG model

Ws[σ; σ′] =
1
N

∑

i

{
wi(σ)δσ,σ′

+ wi(Fiσ)δσ,Giσ′ + wi(Giσ)δσ,Fiσ′
}

(66)

with the shorthand wi(σ) ≡ P{σi(s + 1) = σi|σ(s)} and
where Fi and Gi are cyclic spin-flip operators between the

spin states {–1,0,+1} defined by

FiΦ(σ) = Φ

(
σ1, ..., σi−1,

−3σ2
i − σi + 2

2
, σi+1, ..., σN

)

GiΦ(σ) = Fi(FiΦ(σ)). (67)

Each time step a randomly chosen spin is updated. In the
thermodynamic limit the dynamics becomes continuous
because the characteristic time scale is N−1. The stan-
dard procedure is then to update a random spin accord-
ing to (2) and (13) with time intervals ∆ that are Poisson
distributed with mean N−1 [21]. We can then write a con-
tinuous master equation in the thermodynamic limit

d

ds
ps(σ) ≡ lim

∆→0

ps+∆(σ) − ps(σ)
∆

=
∑

i

{
(wi(σ) − 1)ps(σ)

+ wi(Fiσ)ps(Fiσ) + wi(Giσ)ps(Giσ)
}
. (68)

Starting again from the generating function (59−60),
the average over the paths has to be understood as
an average over a constrained process given by equa-
tions (65−66) in which the overlaps are prescribed at
all time steps. Therefore, due to the introduction of
the mk(s) and m̂k(s), the transition probabilities should
be written as a function of these overlaps. wi(σ(s)) →
wi(m1(s), m2(s)). The key step is to write this stochas-
tic process as a single-site problem. This is possible when
noting that the ps(σ) can be written as

ps(σ) =
N∏

i=1

[
1 − σ2

i +
σi

2
m̃1i(s) +

(
3σ2

i

2
− 1
)

m̃2i(s)
]

(69)
where, in order to satisfy equation (68) the m̃k,i(s) ≡
〈σk

i (s)〉path have to obey the following evolution equations

d

dt
m̃1,i(s) =

2eβJ2m2(s) sinh (βJ1m1(s))
1 + 2eβJ2m2(s) cosh (βJ1m1(s))

− m̃1,i(s)

(70)

d

dt
m̃2,i(s) =

2eβJ2m2(s) cosh (βJ1m1(s))
1 + 2eβJ2m2(s) cosh (βJ1m1(s))

− m̃2,i(s)

(71)

with the initial conditions p0(σ) = δσ,σ(0). These evolu-
tion equations are clearly site independent.

The function Ψ for continuous time then reads

Ψ = i
∑

k

∫
ds m̂k(s)mk(s)

+
1
N

∑

i

ln

〈
exp

[
−i
∑

k

∫
dsσk

i (s)(m̂k(s)+φk,i(s))

]〉

path

.

(72)

and by choosing the initial conditions iidrv with respect
to i and letting φk,i → φk the single-site nature is com-
plete. The saddle-point equations are formally the same



D. Bollé and J. Busquets Blanco: Two-cycles in multi-state Ising-type ferromagnets 405

as those written down in equations (62), implying that
mk(s) = m̃ki(s), ∀i. Hence, the final evolution equations
for the order parameters of the BEG model with sequen-
tial updating are

d

dt
m1(s) =

2eβJ2m2(s) sinh (βJ1m1(s))
1 + 2eβJ2m2(s) cosh (βJ1m1(s))

− m1(s)

(73)

d

dt
m2(s) =

2eβJ2m2(s) cosh (βJ1m1(s))
1 + 2eβJ2m2(s) cosh (βJ1m1(s))

− m2(s).

(74)

Clearly, the stationary solutions obtained by forgetting
about the time dependence do not allow two-cycles.

We end this discussion of the dynamics with the re-
mark that it is rather straightforward to show, by extend-
ing the results of [20] (Sect. 4.1), that the Q-Ising and
BEG Hamiltonians fulfill fluctuation-dissipation theorems
in their specific sequential and parallel forms. Of course,
the BEG model obeys, for both types of updating, two
such relations, since it has two local fields which can be
perturbed independently. The full details of this descrip-
tion are beyond the scope of the present work.

5.3 Simulations and numerical results

We illustrate our findings by showing some numerical re-
sults and comparing these with simulations for up to N =
500 000 spins. Recall Figures 3 and 4. For some typi-
cal values of the couplings in the ferromagnetic phase,
e.g., βJ1 = βJ = 3, βJ2 = βK = 1 in region V I,
both types of updating lead to the same stationary state,
with m1 � m2 � 1, the only difference being the speed
with which this happens: sequential updating seems to be
a bit slower. For βJ = −3 and βK = 1 sequential updat-
ing leads to m1 = m = 0, m2 = a � 0.8 while synchronous
updating gives a cycle in m with |m| � a � 1. Simulations
for these cases are in excellent agreement with these re-
sults.

The second set of points lie in region IV of the phase
diagram Figure 4, i.e., βJ = ±8 and βK = −10 and the
results of the dynamics are shown in Figures 6 and 7.
The dots correspond to simulations points. When βJ > 0
(Fig. 6) we see that the sequential system (bottom) always
goes to the ferromagnetic solution for any initial condi-
tion. We note that for sequential dynamics, t = 1 corre-
sponds to 1 update per spin in average. The synchronous
system (top), however, has two minima in the free en-
ergy, and depending on the initial condition it evolves to
the m = 0 solution or to the m > 0 ferromagnetic one. In
addition, the basin of attraction is somewhat involved in
the sense that the initial conditions m(0) = 0.8 (a = 0.9)
and m(0) = 0.05 (a = 0.1) lead to the m = 0 solution,
while the initial conditions m(0) = 0.5 (a = 0.6) and
m(0) = 0.2 (a = 0.3) lead to the ferromagnetic one. The
behaviour in a is as expected: when m reaches the ferro-
magnetic solution, a tends to a single finite value, while
when m = 0, a enters a two-cycle. Indeed we are in the
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Fig. 6. Evolution of m and a as a function of time for se-
quential (bottom) and synchronous (top) updating for βJ =
8, βK = −10. The dots correspond to simulation points. For
synchronous dynamics, the paths leading to a cycle in a have
been plotted with dashed lines.

region of the phase diagram where three solutions for a
are allowed (recall Fig. 4). For the sake of clarity, we have
only included one of the cycles in a for the synchronous
updating figures (the one for m(0) = 0.8, a(0) = 0.9)

When βJ < 0 (Fig. 7) the sequential system always
evolves to the m = 0 solution, while the synchronous one
shows a similar behaviour as in Figure 6, the only differ-
ence being that now the ferromagnetic solution is a two-
cycle in m.

6 Concluding remarks

In this paper we have studied some of the physical conse-
quences of the way spins are updated, sequentially respec-
tively synchronously, in classical multi-state Ising-type
spin systems. First, we have derived the general form of
the (pseudo-) Hamiltonian for Q-Ising and Blume-Emery-
Griffiths (BEG) spin-glasses with synchronous updating
on the basis of detailed balance.

Next, in order to study the precise differences in the
stationary behaviour we have chosen to simplify these
models to Q-Ising and BEG (anti-) ferromagnets, on the
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Fig. 7. Evolution of m and a as a function of time for se-
quential (bottom) and synchronous (top) updating for βJ =
−8, βK = −10. The dots correspond to simulation points. For
synchronous dynamics, the paths leading to a cycle in a have
been plotted with dashed lines.

one hand because these are exactly solvable both through
a free-energy analysis and a functional integration ap-
proach and on the other hand because we did not find
these results in the literature.

In the case of the Q = 3 Ising model, no surprising
behaviour has been found in the sense that the phase dia-
gram for synchronous updating is symmetric with respect
to the zero-coupling axis J = 0, and that the same station-
ary solutions appear as for sequential updating except for
negative couplings where cycles of period two in m occur
in the ferromagnetic phase.

The differences in the behaviour of the BEG (anti)-
ferromagnet are partly unexpected. Whereas the phase
diagram for sequential updating is even simpler than the
corresponding one for the Q = 3 Ising model, a much
richer phase diagram appears in the case of synchronous
updating. Symmetry with respect to the axis J = 0 still
persists in this case, but the presence of a second relevant
order parameter allows for much richer behaviour. The
region of negative K coupling is characterized by a more
complicated free energy landscape. For instance, when βK
is sufficiently negative three paramagnetic solutions ex-
ist with different values for the spin activity, two-cycles

in a appear in different regions of the parameter space
and a coexistence region of the ferromagnetic and para-
magnetic solutions is found for certain values of the cou-
pling parameters. When looking at the Hamiltonian of the
BEG system, one expects the most interesting behaviour
in the region J > 0, K < 0 (also J < 0 for synchronous
dynamics), since both terms in the Hamiltonian favour
different states for the spins. Moreover, the fact that for
synchronous dynamics one has to work with two types of
spins makes the picture still more involved.

These findings suggest that also in more complicated
disordered spin systems like the BEG spin-glass or neu-
ral network the differences between sequential and syn-
chronous updating might be much richer and more inter-
esting than one expects.
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of Scientific Research, Flanders-Belgium.
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5. J.F. Fontanari, R. Köberle, J. Phys. France 49, 13 (1988)
6. D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1792

(1972)
7. H. Nishimori, 1997 TITECH technical report, unpublished
8. H. Rieger, J. Phys. A 23, L1273 (1990)
9. S.K. Ghatak, D. Sherrington, J. Phys. C 10, 3149 (1977)

10. W.A. Little, Math. Biosci. 19, 101 (1974)
11. W.A. Little, G.L. Shaw, Math. Biosci. 39, 281 (1978)
12. H.W. Capel, Physica 32, 966 (1966); M. Blume, Phys. Rev.

141, 517 (1966); M. Blume, V.J. Emery, R.B. Griffiths,
Phys. Rev. A 4, 1071 (1971)
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